

General Purpose 1.2MHz, RRIO, 1.8V CMOS Amplifiers

1 Features

- General Purpose Amplifiers for Cost-Sensitive Systems
- 1.2MHz GBW for Unity-Gain Stable
- Micro-Power: 85µA Supply Current Per Amplifier
- Low Input Offset Voltage: ±3.0mV Maximum
- Low Noise: 30nV/√Hz at 1kHz
- Single 1.8V to 5.5V Supply Voltage Range
- Rail-to-Rail Input and Output
- Internal RF/EMI Filter
- Extended Temperature Range: −40°C to +125°C

2 Applications

- Battery-Powered Instruments:
 - Consumer, Industrial, Medical, Notebooks
- Audio Outputs
- · Wireless Sensors:
 - Home Security, Remote Sensing, Wireless Metering
- Sensor Signal Conditioning:
 - Sensor Interfaces, Loop-Powered, Active Filters

3 Description

The GD30AP321/GD30AP358/GD30AP324 family of single-, dual-, and quad- channel operational amplifiers is specifically designed for general-purpose cost-sensitive systems applications. Featuring rail-to-rail input output(RRIO) swings, and low current(typical 85µA) combined with a wide bandwidth(1.2MHz) and low noise(30nV/√Hz at 1 kHz) makes this family very attractive for a variety of battery-powered applications that require a good balance between cost and performance, such as audio outputs, consumer electronics,

smoke detectors, portable medical devices and white goods. The low input bias current supports these amplifiers to be used in applications with mega-ohm source impedances.

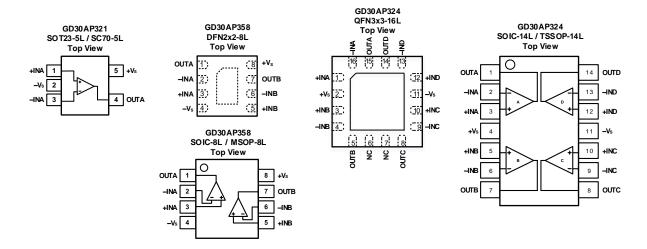
The robust design of the GD30AP321/GD30AP358/GD30AP324 family provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 500pF, integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge(ESD) protection(5kV HBM). The GD30AP321/GD30AP358/GD30AP324 amplifiers are optimized for operation at voltages as low as $\pm 1.8V (\pm 0.9V)$ and up to $\pm 5.5V (\pm 2.75V)$, and over the extended temperature range of $\pm 40^{\circ}C$ to $\pm 125^{\circ}C$.

GD30AP321(single) is available in both SOT23-5L and SC70-5L packages. The GD30AP358(dual) is offered in SOIC-8L, DFN2X2-8L, MSOP-8L packages. The qual-channel GD30AP324 is offered in SOIC-14L, TSSOP-14L, QFN3X3-16L packages.

Device Information¹

PART NUMBER	PACKAGE	BODY SIZE (NOM)
GD30AP321	SOT23-5L	2.92mm x 1.63mm
GD30AF321	SC70-5L	2.10mm x 1.25mm
	DFN2x2-8L	2.00mm x 2.00mm
GD30AP358	SOIC-8L	4.90mm x 3.92mm
	MSOP-8L	3.00mm x 3.00mm
	QFN3x3-16L	3.00mm x 3.00mm
GD30AP324	SOIC-14L	8.73mm x 3.95mm
	TSSOP-14L	4.96mm x 4.40mm

1. For all available packages, see the *Package Information* and *Ordering Information* at the end of data sheet.


Table of Contents

1	Features1				
2	App	lications	1		
3	Desc	cription	1		
Tab	le of	Contents	2		
4	Devi	ice Overview	3		
	4.1	Pinout and Pin Assignment	3		
	4.2	Pin Description	3		
5	Para	ameter Information	4		
	5.1	Absolute Maximum Ratings			
	5.2	Recommended Operation Conditions			
	5.3	Electrical Sensitivity			
	5.4	Thermal Resistance			
	5.5	Electrical Characteristics	5		
	5.6	Typical Characteristics	7		
6	Fund	ctional Description	g		
	6.1	Operating Voltage	ç		
	6.2	Rail-To-Rail Input	ç		
	6.3	Input EMI Filter And Clamp Circuit	ç		
	6.4	Rail-To-Rail Output	10		
	6.5	Capacitive Load And Stability	10		
	6.6	Overload Recovery	11		
	6.7	EMI Rejection Ratio	12		
	6.8	Input-To-Output Coupling	12		
	6.9	Maximizing Performance Through Proper Layout	12		
7	App	lication Information	14		
	7.1	Typical Application	14		
	7.2	Function Description	14		
	7.3	Detailed Design	14		
8	Pack	kage Information	15		
	8.1	Outline Dimensions	15		
	8.2	Recommended Land Pattern	31		
9	Orde	ering Information	39		
10	Rovi	ision History	40		

4 Device Overview

4.1 Pinout and Pin Assignment

4.2 Pin Description

NAME	PIN TYPE ¹	FUNCTION
-IN	I	Inverting input of the amplifier. The voltage range is from $(V_{S-} - 0.1V)$ to $(V_{S+} + 0.1V)$.
+IN	I	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
+Vs	Р	Positive power supply.
-Vs	Р	Negative power supply.
OUT	0	Amplifier output.

^{1.} I = Input, O = Output, P = Power.

Parameter Information

Absolute Maximum Ratings

Exceeding the operating temperature range (unless otherwise noted)¹

	7			
SYMBOL	PARAMETER	MIN	MAX	UNIT
Vs₊ to Vs₋	Supply voltage		10	٧
Vı	Signal input voltage	Vs 0.5	Vs+ + 0.5	V
I _I	Signal input current	-10	10	mA
	Duration of output short circuit		Continuous	S
TJ	Operating junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C
	Lead Temperature Range (Soldering 10 sec)		260	°C

^{1.} The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

- 2. Differential voltages are at IN+, with respect to IN-.
- 3. Short circuits from outputs to V_S can cause excessive heating and eventual destruction.

Recommended Operation Conditions

SYMBOL ^{1,2}	PARAMETER	MIN	TYP MAX	UNIT
V _{S-} to V _{S+}	Input supply voltage range	1.8	5.5	V
V _{СМ}	Common-mode voltage range	V _{S-} - 0.1	V _{S+} + 0.1	V
T _A	Operating temperature range	-40	125	°C

^{1.} The device is not guaranteed to function outside of its operating conditions.

5.3 Electrical Sensitivity

SYMBOL	CONDITIONS	VALUE	UNIT
V _{ESD(HBM)}	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017 ¹	±5000	V
V _{ESD(CDM)}	Charge-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022 ²	±2000	V

^{1.} JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Resistance

SYMBOL ¹	CONDITIONS	PACKAGE	VALUE	UNIT
	Natural convection, 2S2P PCB	SC70-5L	333	
		SOT23-5L	190	°C/W
Θ_{JA}		DFN2x2-8L	94	
		MSOP-8L	201	
		SOIC-8L	125	

^{2.} JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Resistance(continued)

SYMBOL ¹	CONDITIONS	PACKAGE	VALUE	UNIT
		QFN3x3-16L	65	
ΘЈА	Natural convection, 2S2P PCB	TSSOP-14L	112	°C/W
		SOIC-14L	115	

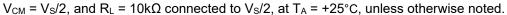
^{1.} Thermal characteristics are based on simulation, and meet JEDEC document JESD51-7.

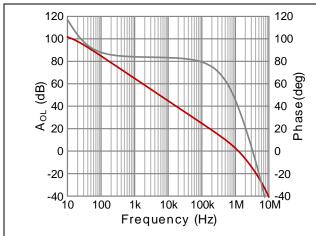
5.5 Electrical Characteristics

 V_S = 5.0V, V_{CM} = $V_S/2$, V_O = $V_S/2$, and R_L = 10k Ω connected to $V_S/2$, T_A = +25°C, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 to +125°C.

SYMBOL	. PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
OFFSET	VOLTAGE		-			•	
Vos	Input offset voltage			±0.7	±3.0	mV	
dVos/d _T	Input offset voltage drift ¹	T _A = -40°C to 125°C		±1	3.5	μV/°C	
DODD	Davis and a still a set a	$V_S = 2.0 \text{ to } 5.5 \text{V}, V_{CM} < V_{S+} - 2 \text{V}$	80	110		-10	
PSRR	Power supply rejection ratio	T _A = -40 to +125°C	75			dB	
INPUT V	OLTAGE RANGE		-			•	
Vсм	Common-mode voltage range		V _{S+} - 0.1		V _{S+} + 0.1	V	
		$V_S = 5.5V$, $V_{CM} = -0.1$ to $5.6V$	70	83			
CMRR		V _{CM} = 0 to 5.3V, T _A = -40 to +125°C	65				
	Common-mode rejection ratio	V _S = 2.0 V, V _{CM} = -0.1 to 2.1V	65	77		dB	
		V _{CM} = 0 to 1.8V, T _A = -40 to +125°C	60				
INPUT B	AS CURRENT					•	
				5	50		
lΒ	Input bias current ¹	T _A = -40°C to 85°C			200	pА	
		T _A = -40°C to 125°C			2000		
los	Input offset current ¹			10	50	pА	
NOISE							
Vn	Input voltage noise	f = 0.1 to 10Hz		6		μV _{P-P}	
_	land to the second and the	f = 10kHz		27		->//-/1.1-	
en	Input voltage noise density	f = 1kHz		30		nV/√Hz	
In	Input current noise density	f = 1kHz		5		fA/√Hz	
INPUT IN	IPEDANCE						
C	Innut canacitance	Differential		2.0		55	
C _{IN}	Input capacitance	Common mode		3.5		− pF	
OPEN-LO	OOP GAIN						
Aol	Open-loop voltage gain	$R_L = 50k\Omega$, $V_O = 0.05$ to 3.5V	90	105		dB	

Electrical Characteristics(continued)


 V_S = 5.0V, V_{CM} = $V_S/2$, V_O = $V_S/2$, and R_L = 10k Ω connected to $V_S/2$, T_A = +25°C, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 to +125°C.


SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
		T _A = -40°C to 125°C	85					
		$R_L = 2k\Omega$, $V_O = 0.15$ to 3.5V	85	100		-		
		$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	80			-		
FREQUE	FREQUENCY RESPONSE							
GBW	Gain-bandwidth product			1.2		MHz		
SR	Slew rate	$G = +1$, $C_L = 100pF$, $V_O = 1.5$ to 3.5V		1		V/µs		
THD+N	Total harmonic distortion + noise	G = +1, f = 1kHz, V _O = 1V _{RMS}		0.003		%		
	0 (11)	To 0.1%, G = +1, 1V step		1.5		μs		
ts	Settling time	To 0.01%, G = +1, 1V step		1.8				
t _{OR}	Overdrive recovery time	To 0.1%, VIN * Gain > V _S		2.5		μs		
OUTPUT		,	•			I		
	I limb and and and an arrival	$R_L = 50k\Omega$	V _{S+} - 6	V _{S+} - 3		\/		
V _{OH}	High output voltage swing	$R_L = 2k\Omega$	V _{S+} - 100	V _{S+} - 65		mV		
		$R_L = 50k\Omega$		V _{S-} + 2	V _{S-} + 4	.,		
Vol	Low output voltage swing	$R_L = 2k\Omega$		V _{S-} + 42	V _{S-} + 65	mV		
	0, , , ,	Source current through 10Ω		40				
Isc Short-circuit current		Sink current through 10Ω		50		- mA		
POWER S	POWER SUPPLY							
	Quiescent current (per			85	120			
Iq	amplifier)	T _A = -40 to +125°C			150	μA		

^{1.} Guaranteed by design and engineering sample characterization.

5.6 Typical Characteristics

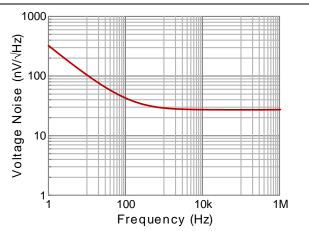
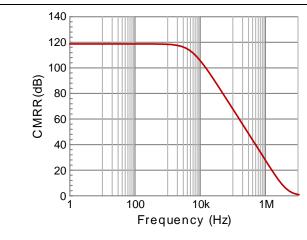



Figure 1. Open-loop Gain and Phase vs. Frequency

Figure 2. Input Voltage Noise Spectral Density vs.

Frequency

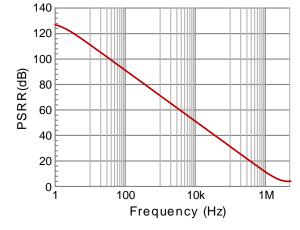
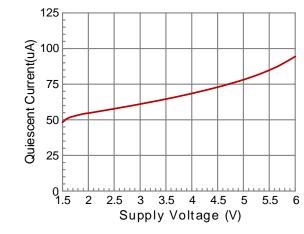



Figure 3. Common Mode Rejection Ratio vs.

Frequency

Figure 4. Power Supply Rejection Ratio vs. Frequency

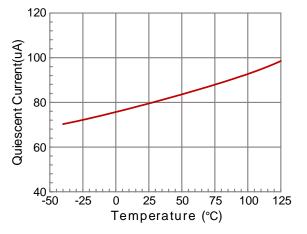


Figure 5. Quiescent Current vs. Supply Voltage

Figure 6. Quiescent Current vs. Temperature

Typical Characteristics(continued)

 V_{CM} = $V_S/2$, and R_L = 10k Ω connected to $V_S/2$, at T_A = +25°C, unless otherwise noted.

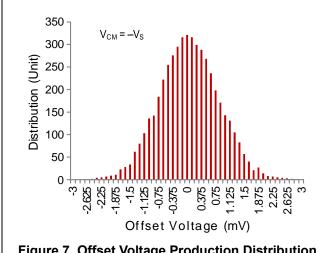


Figure 7. Offset Voltage Production Distribution

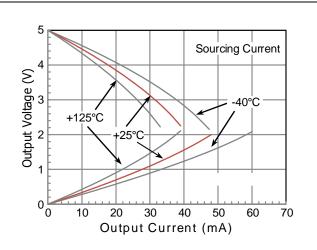


Figure 8. Output Voltage Swing vs. Output Current

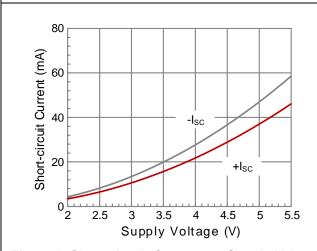


Figure 9. Short-circuit Current vs. Supply Voltage

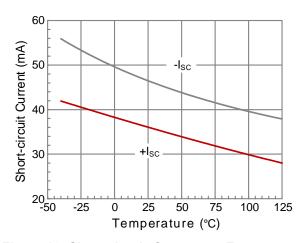


Figure 10. Short-circuit Current vs. Temperature

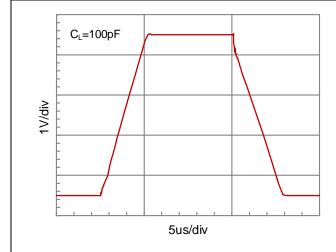


Figure 11. Large Signal Step Response

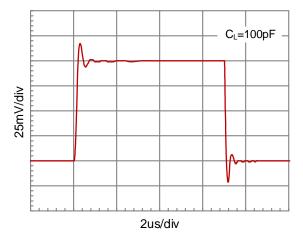


Figure 12. Small Signal Step Response

6 Functional Description

The GD30AP321/GD30AP358/GD30AP324 is a family of low-power, rail-to-rail input and output operational amplifiers specifically designed for portable applications. These devices operate from 1.8V to 5.5V, are unity-gain stable, and suitable for a wide range of general-purpose applications. The class AB output stage is capable of driving $\leq 10 \text{k}\Omega$ loads connected to any point between V_{S+} and ground. The input common-mode voltage range includes both rails, and allows the GD30AP321/GD30AP358/GD30AP324 family to be used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications, and makes them ideal for driving sampling analog-to-digital converters(ADCs).

The GD30AP321/GD30AP358/GD30AP324 features 1.2MHz bandwidth and 1V/ μ s slew rate with only 85 μ A supply current per amplifier, providing good ac performance at very low power consumption. DC applications are also well served with a low input noise voltage of 30nV/ ν Hz at 1kHz, low input bias current, and an input offset voltage of ± 3.0 mV maximum. The typical offset voltage drift is 1μ V/°C, over the full temperature range the input offset voltage changes only 100μ V(0.7mV to 0.8mV).

6.1 Operating Voltage

The GD30AP321/GD30AP358/GD30AP324 family is optimized for operation at voltages as low as +1.8V(±0.9V) and up to +5.5V(±2.75V). In addition, many specifications apply from -40°C to +125°C. Parameters that vary significantly with operating voltages or temperature are illustrated in the Typical Characteristics graphs.

NOTE: Supply voltages(V_{S+} to V_{S-}) higher than +10V can permanently damage the device.

6.2 Rail-To-Rail Input

The input common-mode voltage range of the GD30AP321/GD30AP324 extends 100mV beyond the negative and positive supply rails. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair. The N-channel pair is active for input voltages close to the positive rail, typically V_{S+} -1.4V to the positive supply, whereas the P-channel pair is active for inputs from 100mV below the negative supply to approximately V_{S+} -1.4V. There is a small transition region, typically V_{S+} -1.2V to V_{S+} -1V, in which both pairs are on. This 200mV transition region can vary up to 200mV with process variation. Thus, the transition region(both stages on) can range from V_{S+} -1.4V to V_{S+} -1.2V on the low end, up to V_{S+} -1V to V_{S+} -0.8V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can be degraded compared to device operation outside this region.

The typical input bias current of the GD30AP321/GD30AP358/GD30AP324 during normal operation is approximately 5pA. In overdriven conditions, the bias current can increase significantly. The most common cause of an overdriven condition occurs when the operational amplifier is outside of the linear range of operation. When the output of the operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied and a differential input voltage develops across the input pins. This differential input voltage results in activation of parasitic diodes inside the front-end input chopping switches that combine with electromagnetic interference(EMI) filter resistors to create the equivalent circuit. Notice that the input bias current remains within specification in the linear region.

6.3 Input EMI Filter And Clamp Circuit

Figure 13 shows the input EMI filter and clamp circuit. The GD30AP321/GD30AP358/GD30AP324 op-amps have internal ESD protection diodes(D1, D2, D3, and D4) that are connected between the inputs and each supply rail.

These diodes protect the input transistors in the event of electrostatic discharge and are reverse biased during normal operation. This protection scheme allows voltages as high as approximately 500mV beyond the rails to be applied at the input of either terminal without causing permanent damage. These ESD protection current-steering diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 20mA as stated in the Absolute Maximum Ratings.

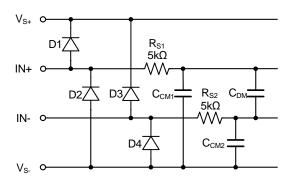


Figure 13. Input EMI Filter and Clamp Circuit

Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the DC offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The EMI filter of the GD30AP321/GD30AP358/GD30AP324 is composed of two $5k\Omega$ input series resistors(R_{S1} and R_{S2}), two common-mode capacitors(R_{CM1} and R_{CM2}), and a differential capacitor(R_{DM}). These RC networks set the R_{CM2} and R_{CM2} or common-mode signals, and at 22MHz for differential signals.

6.4 Rail-To-Rail Output

Designed as a micro-power, low-noise op-amp, the GD30AP321/GD30AP358/GD30AP324 delivers a robust output drive capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing capability. For resistive loads up to $50k\Omega$, the output swings typically to within 3mV of either supply rail regardless of the power-supply voltage applied. Different load conditions change the ability of the amplifier to swing close to the rails. For resistive loads up to $2k\Omega$, the output swings typically to within 65mV of the positive supply rail and within 42mV of the negative supply rail.

6.5 Capacitive Load And Stability

The GD30AP321/GD30AP358/GD30AP324 family can safely drive capacitive loads of up to 500pF in any configuration. As with most amplifiers, driving larger capacitive loads than specified may cause excessive overshoot and ringing, or even oscillation. A heavy capacitive load reduces the phase margin and causes the amplifier frequency response to peak. Peaking corresponds to over-shooting or ringing in the time domain. Therefore, it is recommended that external compensation be used if these op-amps must drive a load exceeding 500pF. This compensation is particularly important in the unity-gain configuration, which is the worst case for stability.

A quick and easy way to stabilize the op-amp for capacitive load drive is by adding a series resistor, $R_{\rm ISO}$, between the amplifier output terminal and the load capacitance, as shown in Figure 14. $R_{\rm ISO}$ isolates the amplifier output and feedback network from the capacitive load. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm L}$.

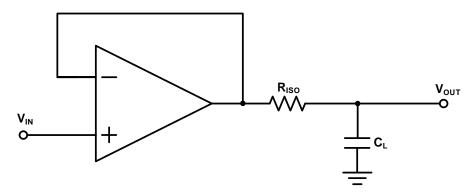


Figure 14. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 15. It provides DC accuracy as well as AC stability. The R_F provides the DC accuracy by connecting the inverting signal with the output.

The C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain, or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

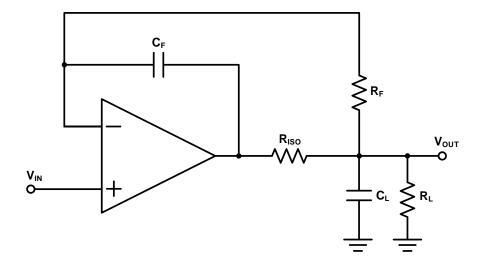


Figure 15. Indirectly Driving Heavy Capacitive Load with DC Accuracy

6.6 Overload Recovery

Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated state to a linear state. The output devices of the operational amplifier enter a saturation region when the output voltage exceeds the rated operating voltage, either because of the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return back to the linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time. The overload recovery time for the GD30AP321/GD30AP358/GD30AP324 is approximately 2.5µs.

6.7 EMI Rejection Ratio

Circuit performance is often adversely affected by high frequency EMI. When the signal strength is low and transmission lines are long, an op-amp must accurately amplify the input signals. However, all op-amp pins ——the non-inverting input, inverting input, positive supply, negative supply, and output pins are susceptible to EMI signals. These high frequency signals are coupled into an op-amp by various means, such as conduction, near field radiation, or far field radiation. For example, wires and printed circuit board(PCB) traces can act as antennas and pick up high frequency EMI signals.

Amplifiers do not amplify EMI or R_F signals due to their relatively low bandwidth. However, due to the nonlinearities of the input devices, op-amps can rectify these out of band signals. When these high frequency signals are rectified, they appear as a DC offset at the output.

The GD30AP321/GD30AP358/GD30AP324 have integrated EMI filters at their input stage. A mathematical method of measuring EMIRR is defined as follows:

$$EMIRR = 20log(VIN_{IN PEAK}/\Delta V_{OS})$$
 (1)

6.8 Input-To-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.

6.9 Maximizing Performance Through Proper Layout

To achieve the maximum performance of the extremely high input impedance and low offset voltage of the GD30AP321/GD30AP358/GD30AP324, care is needed in layout the circuit board. The PCB surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board reduces surface moisture and provides a humidity barrier, reducing parasitic resistance on the board. The use of guard rings around the amplifier inputs further reduces leakage currents. Figure 16 shows proper guard ring configuration and the top view of a surface-mount layout. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. By setting the guard ring voltage equal to the voltage at the non-inverting input, parasitic capacitance is minimized as well. For further reduction of leakage currents, components can be mounted to the PCB using Teflon standoff insulators.

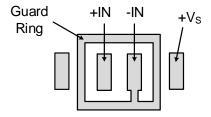


Figure 16. Use a guard ring around sensitive pins

Other potential sources of offset error are thermoelectric voltages on the circuit board. This voltage, also called Seebeck voltage, occurs at the junction of two dissimilar metals and is proportional to the temperature of the junction. The most common metallic junctions on a circuit board are solder-to-board trace and solder-to-component lead. If the temperature of the PCB at one end of the component is different from the temperature at

the other end, the resulting Seebeck voltages are not equal, resulting in a thermal voltage error.

This thermocouple error can be reduced by using dummy components to match the thermoelectric error source. Placing the dummy component as close as possible to its partner ensures both Seebeck voltages are equal, thus canceling the thermocouple error. Maintaining a constant ambient temperature on the circuit board further reduces this error. The use of a ground plane helps distribute heat throughout the board and reduces EMI noise pickup.

7 Application Information

7.1 Typical Application

The GD30AP321/GD30AP358/GD30AP324 amplifiers can be widely used in various signal conditioning applications. One of typical application for operational amplifier is an inverting amplifier. Application in Figure 17 reverses the input voltage and the magnitude of voltage is amplified, reduced or maintained according to a certain proportion.

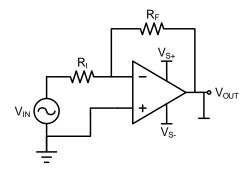


Figure 17. Application Schematic

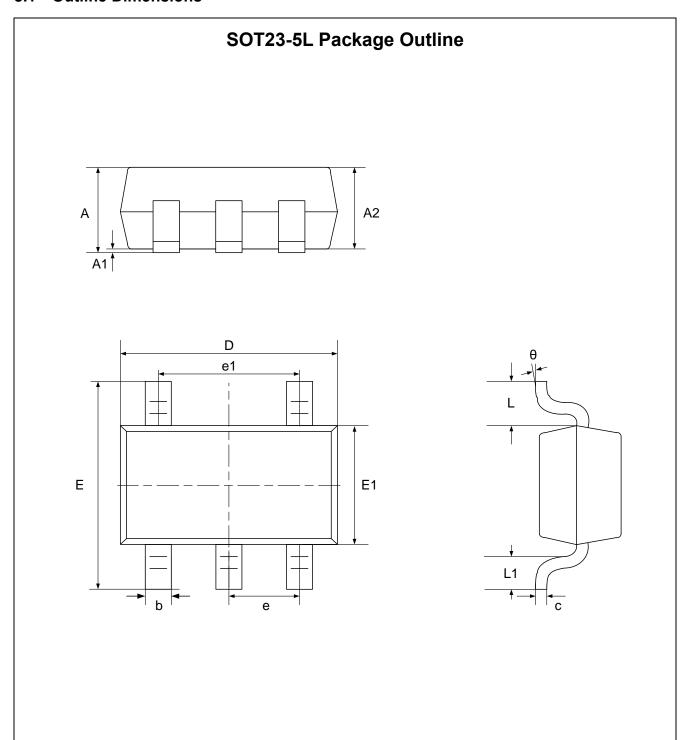
7.2 Function Description

This application requires the function of voltage amplification, which need to scales a signal of ± 0.5 V to ± 1.8 V. The supply voltage of amplifiers must be chosen large than the input voltage range and output voltage range. At the same time, The amplifiers is power by a dual power supply because the input voltage is an AC signal.

7.3 Detailed Design

Determine the gain required of the inverting amplifier by Equation(2):

$$A_{V} = \frac{VOUT}{VIN} = \frac{1.8}{-0.5} = -3.6$$
 (2)


Because the transfer function of inverting amplifier is highly reliant on resistors($R_I \ R_F$), used resistors with low tolerances to maximize performance and minimize error. The current of amplifiers circuit is in milliampere range. So the value of resistors need to keep in the kilohm range at least. The value of $10k\Omega$ for R_I and $36k\Omega$ for R_F is suitable in this application. The voltage conversion coefficient of inverting amplifier was determined by Equation(3):

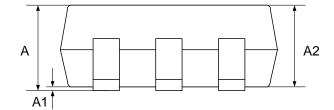
$$A_{V} = -\frac{R_{F}}{R_{I}} \tag{3}$$

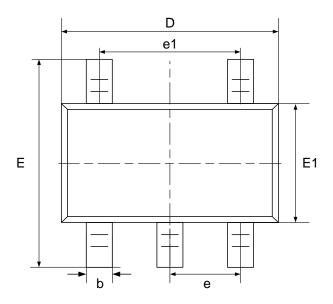
8 Package Information

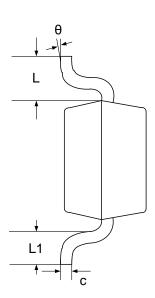
8.1 Outline Dimensions

NOTES:

- 1. All dimensions are in millimeters.
- 2. Package dimensions does not include mold flash, protrusions, or gate burrs.
- 3. Refer to the Table 1 SOT23-5L dimensions(mm).




Table 1. SOT23-5L dimensions(mm)


MIN	TYP	MAX
	• • •	IVIAA
		1.35
0.00		0.15
1.00		1.20
0.35		0.45
0.14		0.20
2.82		3.02
2.60		3.00
1.526		1.726
	0.95 BSC	
	1.90 BSC	
	0.60 REF	
0.30		0.60
0°		8°
	0.00 1.00 0.35 0.14 2.82 2.60 1.526	0.00 1.00 0.35 0.14 2.82 2.60 1.526 0.95 BSC 1.90 BSC 0.60 REF

SC70-5L Package Outline

NOTES: (continued)

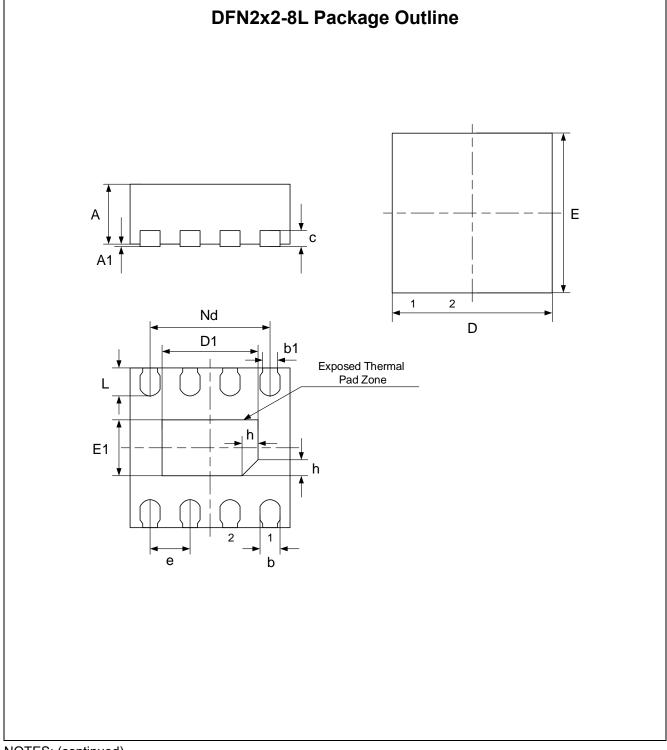
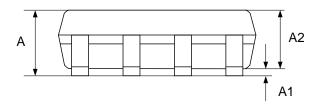

1. Refer to the Table 2 SC70-5L dimensions(mm).

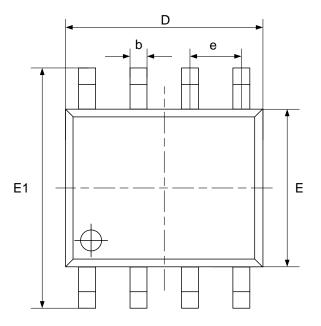
Table 2. SC70-5L dimensions(mm)

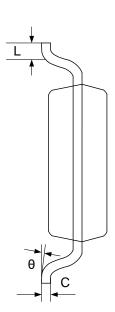
SYMBOL	MIN	TYP	MAX
A	0.90		1.10
A1	0.00		0.10
A2	0.90		1.00
b	0.15		0.35
С	0.08		0.15
D	2.00		2.20
E	2.15		2.45
E1	1.15		1.35
е		0.65 BSC	
e1		1.30 BSC	
L	0.525 REF		
L1	0.26		0.46
θ	0°		8°

NOTES: (continued)

1. Refer to the Table 3 DFN2x2-8L dimensions(mm).

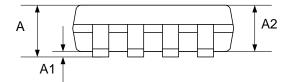


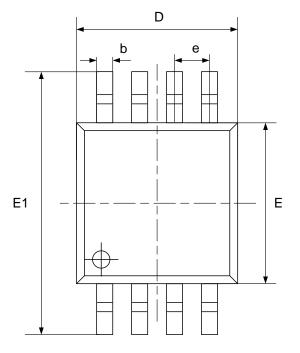

Table 3. DFN2x2-8L dimensions(mm)

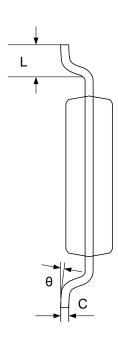

		· · ·		
SYMBOL	MIN	ТҮР	MAX	
A	0.70	0.75	0.80	
A1		0.02	0.05	
b	0.20	0.25	0.30	
b1		0.18 REF		
С	0.18	0.20	0.25	
D	1.90	2.00	1.30	
D1	1.10	1.20	1.30	
Nd	1.50 BSC			
E	1.90	2.00	2.10	
E1	0.60	0.70	0.80	
е	0.50 BSC			
L	0.30	0.35	0.40	
h	0.15	0.20	0.25	

NOTES: (continued)

1. Refer to the Table 4 SOIC-8L dimensions(mm).



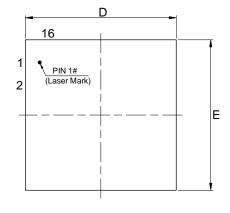

Table 4. SOIC-8L dimensions(mm)

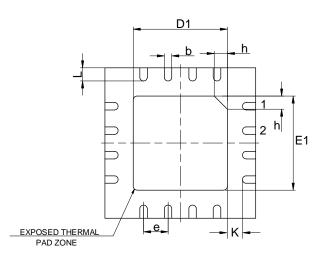

SYMBOL	MIN	TYP	MAX
А	1.370		1.670
A1	0.070		0.170
A2	1.300		1.500
b	0.306		0.506
С		0.203	
D	4.700		5.100
E	3.820		4.020
E1	5.800		6.200
е		1.270	
L	0.450		0.750
θ	0°		8°

MSOP-8L Package Outline

NOTES: (continued)

1. Refer to the Table 5 MSOP-8L dimensions(mm).




Table 5. MSOP-8L dimensions(mm)

SYMBOL	MIN	TYP	MAX
А	0.800		1.100
A1	0.050		0.150
A2	0.750		0.950
b	0.290		0.380
С	0.150		0.200
D	2.900		3.100
E	2.900		3.100
E1	4.700		5.100
е		0.650	
L	0.400		0.700
θ	0°		8°

QFN3x3-16L Package Outline

NOTES: (continued)

1. Refer to the Table 6 QFN3x3-16L dimensions(mm).

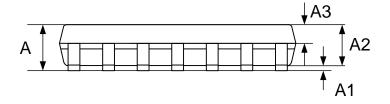
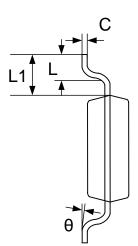



Table 6. QFN3x3-16L dimensions(mm)


SYMBOL	MIN	TYP	MAX	
А	0.70	0.75	0.80	
A3		0.210 REF		
b	0.20	0.25	0.30	
D	2.90	3.00	3.10	
D1	1.60	1.65	1.70	
Е	2.90	3.00	3.10	
E1	1.60	1.65	1.70	
е	0.50 BSC			
h	0.20	0.25	0.30	
K	0.225	0.275	0.325	
L	0.35	0.40	0.45	

SOIC-14L Package Outline

NOTES: (continued)

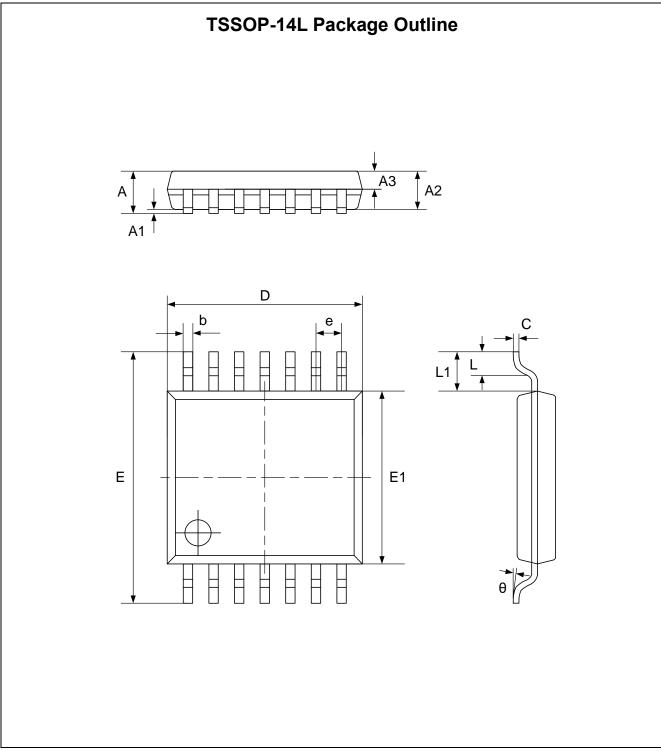

1. Refer to the Table 7 SOIC-14L dimensions(mm).

Table 7. SOIC-14L dimensions(mm)

		` ,	
SYMBOL	MIN	TYP	MAX
A	1.450		1.850
A1	0.100		0.300
A2	1.350		1.550
A3	0.550		0.750
b		0.406	
С		0.203	
D	8.630		8.830
Е	5.840		6.240
E1	3.850		4.050
е		1.270	
L1		1.040 REF	
L	0.350		0.750
θ	2°		8°

NOTES: (continued)

1. Refer to the Table 8 TSSOP-14L dimensions(mm).

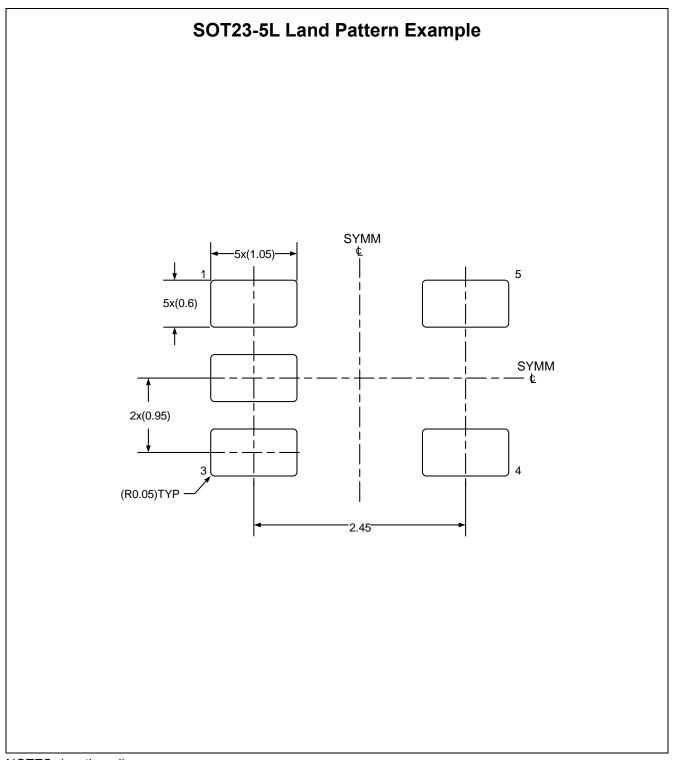
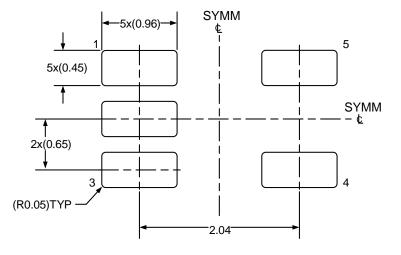
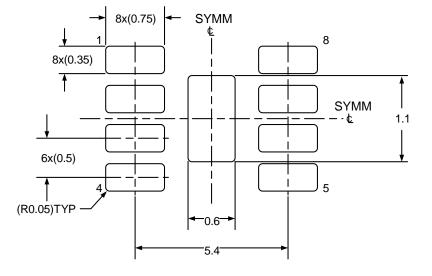


Table 8. TSSOP-14L dimensions(mm)

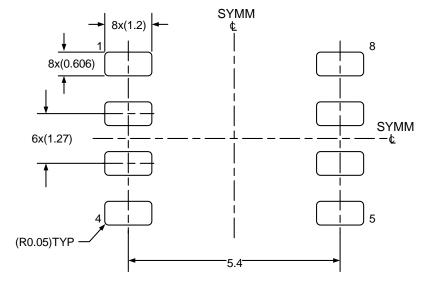
SYMBOL	MIN	TYP	MAX
А			1.200
A1	0.050		0.150
A2	0.900		1.050
A3	0.390		0.490
b	0.200		0.290
С	0.130		0.180
D	4.860		5.060
E	6.200		6.600
E1	4.300		4.500
е		0.650	
L1		1.000 REF	
L	0.450		0.750
θ	0°		8°


8.2 Recommended Land Pattern

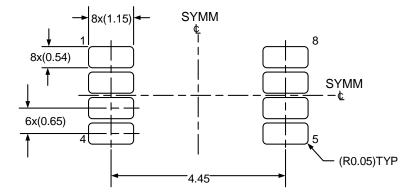
- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 20X scale.


SC70-5L Land Pattern Example

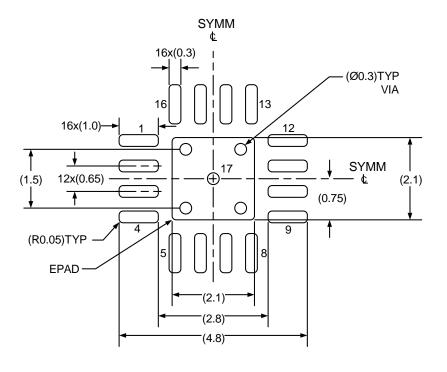
- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 20X scale.


DFN2x2-8L Land Pattern Example

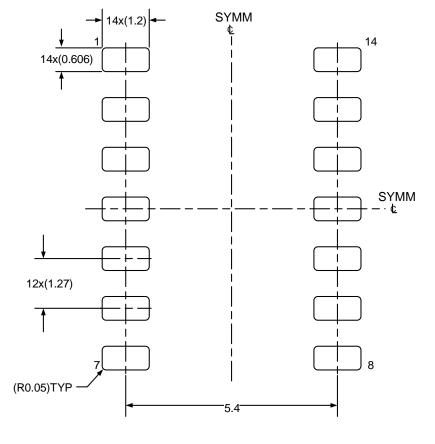
- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 20X scale.


SOIC-8L Land Pattern Example

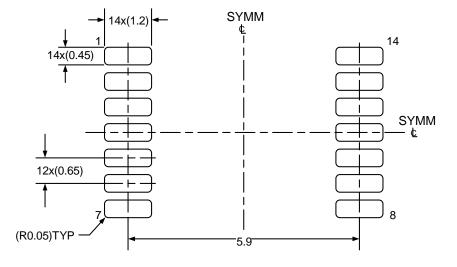
- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.



- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.


QFN3x3-16L Land Pattern Example

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.



- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.

TSSOP-14L Land Pattern Example

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.

9 Ordering Information

Ordering Code	Package Type	ECO Plan	Packing Type	MOQ	OP Temp(°C)
GD30AP321NNSTR-I01	SOT23-5L	Green	Tape & Reel	3000	-40°C to +125°C
GD30AP321NNDTR-I01	SC70-5L	Green	Tape & Reel	3000	−40°C to +125°C
GD30AP358NWLTR-I02	SOIC-8L	Green	Tape & Reel	4000	−40°C to +125°C
GD30AP358NWETR-I02	DFN2x2-8L	Green	Tape & Reel	3000	-40°C to +125°C
GD30AP358NWMTR-I02	MSOP-8L	Green	Tape & Reel	3000	-40°C to +125°C
GD30AP324NZLTR-I04	SOIC-14L	Green	Tape & Reel	2500	−40°C to +125°C
GD30AP324NZPTR-I04	TSSOP-14L	Green	Tape & Reel	3000	−40°C to +125°C
GD30AP324NLUTR-I04	QFN3x3-16L	Green	Tape & Reel	3000	-40°C to +125°C

10 Revision History

REVISION NUMBER	DESCRIPTION	DATE
1.0	Initial release and device details	2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advancedlighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 GigaDevice - All rights reserved