

GigaDevice Semiconductor Inc.

GD30DR3000x H-Bridge Motor Driver

Datasheet

Table of Contents

T	able c	of Contents	. 2
L	ist of	Figures	. 4
L	ist of	Tables	. 5
1	Fea	ıture	. 6
2	Δnı	olications	6
- 3		neral description	
		•	
4	De	vice overview	
	4.1	Device information	7
	4.2	Block diagram	7
	4.3	Pinout and pin assignment	8
	4.4	Pin definitions	
5	E	nctional description	
3		•	
	5.1	H-Bridge Drive	
	5.1. 5.1.		
	5.1.	·	
	5.1.		
	5.1.	· · · · · · · · · · · · · · · · · · ·	
	5.1.	•	
	5.2	Protection features	11
	5.2.	1 Over temperature shutdown	.11
	5.2.	2 Over current protection	.11
	5.2.	Power supply undervoltage lockout (UVLO)	.11
6	Ele	ctrical characteristics	12
	6.1	Absolute maximum ratings	12
	6.2	Recommended operation conditions	12
	6.3	Electrical sensitivity	13
	6.4	Power supplies and current consumption	
		·	
	6.5	Logic inputs characteristics	
	6.6	Motor driver characteristics	
	6.7	Current regulation	14
	6.8	Protection features	14
-	Rev1 2		2

GD30DR3000x Datasheet

6.9	9 Typical Characteristics	16
7	Typical application circuit	17
8	Layout guideline	18
9	Package information	19
9.	1 SOP8-EP package outline and dimensions	19
9.2	2 Thermal characteristics	21
10	Ordering information	22

List of Figures

Figure 4-1 Block diagram for GD30DR3000x	7
Figure 4-2 GD30DR3000x SOP8 Pinouts	8
Figure 5-1 The driver outputs and current path	9
Figure 5-2 Mixed current decay	
Figure 7-1 Typical GD30DR3000x application circuit	
Figure 8-1 Typical GD30DR3000x layout guideline	18
Figure 9-1 SOP8-EP package outline	19
Figure 9-2 SOP8-EP recommend footprint	

List of Tables

Table 4-1 Device information for GD30DR3000x	7
Table 4-2 GD30DR3000x pin configuration	8
Table 5-1 PWM mode truth table	g
Table 6-1 Absolute maximum ratings	12
Table 6-2 Recommended operation conditions	12
Table 6-3 Electrostatic discharge	13
Table 6-4 Power supplies and currents	
Table 6-5 Logic input characteristics	13
Table 6-6 Gate driver characteristics	
Table 6-7 Open drain output characteristics	14
Table 6-8 Protection features characteristics	
Table 7-1 Design Parameters	17
Table 9-1 SOP8-EP dimensions	19
Table 9-2 Package thermal characteristics ⁽¹⁾	21
Table 10-1 Part order code for GD30DR3000x	22

1 Feature

- Wide 6.5 to 40V Supply Voltage
- Adjustable Regulated Drive Current Limit, up to 3.2A Peak
- PWM Input Control
- Low R_{DS(ON)} Integrated MOSFET
- Low Power Standby Mode
- Thermally-Enhanced: SOP-8 with exposed pad
- Protection Features:
 - Over current protection
 - MOSFET Shoot-Through Prevention
 - Overtemperature Shutdown
 - VP Under Voltage Lock-Out (UVLO)

2 Applications

- DC Brush Motors
- Home Appliances
- Printers
- Industrial Automation
- Sweeping Robot

3 General description

The GD30DR3000x is an H-bridge driver, and is designed to drive one DC brush motor or other inductive loads. The driver can support up to 3.2A peak current. The GD30DR3000x can operate with a single power supply ranging from 6.5V to 40V and VREF voltage of 0.3V to 5V.

The H-bridge is composed of 4 high voltage MOSFET. Two input terminals are provided to control the MOSFETs, and therefore control the speed and direction of the DC motor with externally applied PWM control signals. Integrated current rectification allows the motor driver to regulate the motor current during start up and high load. It also lowers the power dissipation during PWM operation.

The device uses a programmable dead-time and automatic handshaking to prevent the highside and low-side MOSFET from shoot-through when switching. Internal protection includes overcurrent protection, VP undervoltage lock-out and over temperature shutdown.

The versatile features of the IC allow for it to be used in a broad range of applications, such as brush motors, home appliances, etc. The GD30DR3000x is available in a low profile 8-pin SOP with thermal exposed pad.

4 Device overview

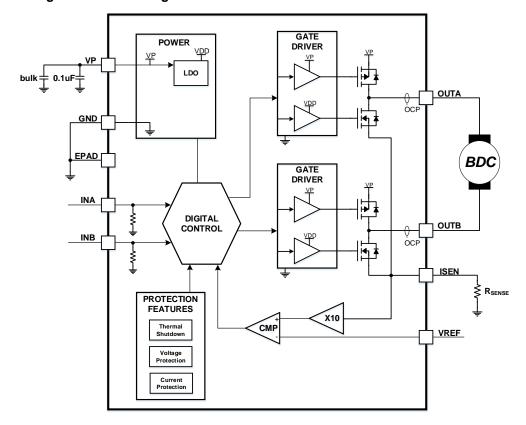
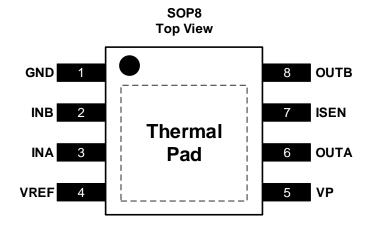

4.1 Device information

Table 4-1 Device information for GD30DR3000x

Part Number Package		Function	Description
GD30DR3000x	SOP8-EP	PWM Mode	H-Bridge Motor Driver

4.2 Block diagram


Figure 4-1 Block diagram for GD30DR3000x

4.3 Pinout and pin assignment

Figure 4-2 GD30DR3000x SOP8 Pinouts

4.4 Pin definitions

Table 4-2 GD30DR3000x pin configuration

Pl	IN	TYPE	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
GND	1	Р	Device logic ground, connect to board ground.
INB	2	1	PWM input A/B, control signal of H-bridge, internal
INA	3		pulldown.(See Table 5-1).
VREF	4	I	Analog reference voltage for current regulation, apply a voltage between 0.3 to 5V. For information on current regulation, see the <i>Current regulation</i> section.
VP	5	Р	Power supply, connect a 0.1uF bypass capacitor to ground, as well as sufficient bulk capacitance, rated for the VP voltage.
OUTA	6	C	H-bridge output A/B, connect to the DC motor or other
OUTB	8)	inductive load.
ISEN	7	I	Current path to ground, connect a sense resistor to ground to set the current regulation or directly to ground when not using regulation.
PGND	Thermal	Р	Power ground, connect to board ground, use large ground plane for good thermal dissipation, and multiple nearby vias connecting those planes.

5 Functional description

5.1 H-Bridge Drive

The GD30DR3000x is a H-bridge motor driver with 4 integrated MOSFETs. Two inputs control the logic of the H-bridge driver with the single power supply VP. Motor speed can be controlled with PWM control up to 100KHz. When both logic inputs are low for a 1ms period, the device will be set into standby mode and consume less power. Protection features such as OCP, OTSD and UVLO are implemented to prevent the device and system from fault and damage.

5.1.1 PWM Mode

In GD30DR3000x, the device operates in PWM mode. H-bridge in PWM mode supports four output states: coast (Hi-Z), forward, reverse and brake. They are controlled by INA/INB according to Table 5-1. The inputs can be set to static voltage for 100% duty cycle drive, or PWM for variable motor speed. When using PWM, it typically works best to switch between driving and braking. The driver outputs and current are shown in the following Figure 5-1.

Figure 5-1 The driver outputs and current path

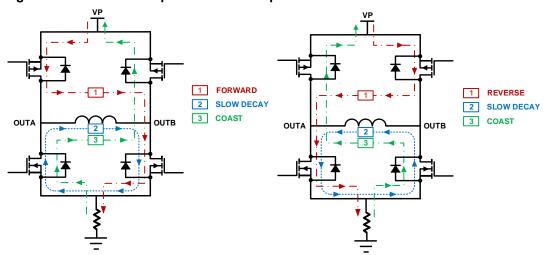


Table 5-1 PWM mode truth table

INA	INB	OUTA	OUTB	Description
0	0 Hi-Z Hi-Z Coast; H-bridge disabled to High-Z		Coast; H-bridge disabled to High-Z	
0	1	L	H Reverse (Current from OUTB to	
1	0	Н	L	Forward (Current from OUTA to OUTB)
1	1	L	L	Brake; low-side slow decay

5.1.2 Standby Mode

The GD30DR3000x enters standby mode when INA and INB are both low for more than t_{sleep} (typically 1ms). The outputs will remain High-Z. After INA or INB are high for at least 5us, the device will be operational 60us (t_{wake}) later.

5.1.3 Dead time

An internal handshaking scheme is used to prevent shoot-through between the high side and low side MOSFETs. A typical dead time of 200ns is inserted when transitioning between MOSFETs in each half-bridge.

5.1.4 Current regulation

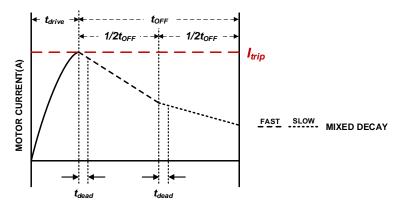
The output current is regulated at a limit set by an analog input V_{REF} and the resistor R_{SEN} connected from ISEN to ground, according to the equation:

$$I_{\mathsf{TRIP}} = \frac{V_{\mathsf{REF}}\left(V\right)}{A_{\mathsf{V}} \times R_{\mathsf{REF}}\left(\Omega\right)} = \frac{V_{\mathsf{REF}}\left(V\right)}{10 \times R_{\mathsf{SEN}}\left(\Omega\right)} \big(A\big)$$

For example, if $V_{REF} = 3.3V$ and $R_{SEN} = 0.15\Omega$, the GD30DR3000x will limit motor current limit to 2.2A no matter how much load torque is applied.

Usually I_{TRIP} is set above the normal motor operating current, and high enough to achieve adequate spin-up time, and low enough to constrain current to a desired level.

If I_{SEN} is connected to ground directly, the current regulation function is disabled. V_{REF} should still be applied to a value which could provide high noise margin. The output current could go up to 3.2A for a few hundred milli-second. Over current protection and over temperature protection may be triggered to protect the IC and system.


5.1.5 Mixed current decay

When current regulation is triggered, IC will enter a fixed time PWM off cycle to re-circulate the current. By default, the device enforces slow current decay by enabling both low-side MOSFETs for the fixed off time (toff, 25us typical).

A mixed current decay mode is implemented as an option only in GD30DR3000x. In this mode, when current regulation is triggered, the driver outputs are switched to opposite polarity (High to Low, or Low to High) for the first half toff. In the latter half of toff, the driver is switched back to slow-decay mode. Mixed current decay are explained in Figure 5-2.

Figure 5-2 Mixed current decay

5.1.6 Internal power supply

A regulated 5V VDD derived from the VP supplies the gate to source voltage for the low-side NMOSFET. However, The driving voltage between the PMOSFET gate and source is the external power supply.

5.2 Protection features

5.2.1 Over temperature shutdown

If the die temperature exceeds the trip point of the thermal shutdown limit (T_{OTSD} , typical 150°C), all the MOSFETs are disabled, the internal power supplies are shut down. Normal operation starts again when the temperature falls below the hysteresis and the over temperature condition clears.

5.2.2 Over current protection

The individual currents go through the MOSFETs (high-side and low-side) are monitored cycle by cycle. In case any current is over the over-current limit (4A typical), all the MOSFETs are disabled and the internal power supply will be shutdown. The recycle of the PWM control will be retried after a delay time of 3ms and normal operation will be resumed if the OCP events are cleared.

5.2.3 Power supply undervoltage lockout (UVLO)

At any time if the voltage on the power supply VP falls below the UVLO threshold, all the internal MOSFETs in the H-bridge will be disabled. Normal operation will resume when VP rises above UVLO threshold.

6 Electrical characteristics

6.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 6-1 Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
V_{VP}	Power supply pin voltage (VP)	-0.3	45	V
	Voltage differential between ground pins (GND, PGND)	-0.3	0.3	V
V_{REF}	V _{REF} Reference voltage		6	V
V _{INA/B}	V _{INA/B} PWM input signal		7	V
V _{OUTA/B}	V _{OUTA/B} H-bridge output drive		V _{VP} +0.7	V
VISEN	V _{ISEN} Current path to ground		1.0	V
I _{LIM}	I _{LIM} Internal current limit		4	Α
	Thermal characteristics			
TJ	Operating junction temperature,	-40	150	°C
T _{stg}	Storage temperature,	-65	150	°C

6.2 Recommended operation conditions

Table 6-2 Recommended operation conditions

Symbol	nbol Parameter		Max	Unit				
V_{VP}	Power supply voltage (VP)	6.5	40	V				
V _{INA/B}	Input PWM voltage (INA/INB)	0	5.5	V				
f _{INA/B}	f _{INA/B} Applied input PWM signal frequency		100	KHz				
I _{OUTA/B}	I _{OUTA/B} H-bridge drive current (OUTA/OUTB)		3.2	Α				
V _{ISEN}	V _{ISEN} Current path to ground		1.0	V				
V _{REF}	V _{REF} Reference voltage input (REF)		5	V				
	Thermal characteristics							
TA	T _A Operating ambient temperature		85	°C				
TJ	Operating junction temperature	-40	125	°C				

6.3 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample.

Table 6-3 Electrostatic discharge

Symbol	Parameter	Conditions	Value	Unit
Veorgina	human body model	T _A = 25 °C;	±2000	V
V _{ESD(HBM)}	numan body model	JS-001-2017	±2000	V
\/	abarga davias madal	T _A = 25 °C;	.1000	\/
VESD(CDM)	charge device model	JS-002-2018	±1000	V

6.4 Power supplies and current consumption

All parameters are tested at $T_A = -40$ °C to +125°C, $V_{VP} = 6.5$ to 40 V (unless otherwise noted).

Table 6-4 Power supplies and currents

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ivp	VP operating supply current	V _{VP} = 12 V, T _A = 25°C	_	3	10	mA
Ivpq	VP standby mode current	V _{VP} = 12 V, INA=INB = 0 V	ı	_	10	μA
twake	Turn-on time	V _{VP} > V _{UVLO} , INA or INB high	_	60	_	μs
t _{SLEEP}	Turn-off delay time	INA=INB=0 to device standby mode		1	1.5	ms

6.5 Logic inputs characteristics

Logic input pins include INA, INB.

All parameters are tested at $T_A = -40$ °C to +125°C, $V_{VP} = 6.5$ to 40 V (unless otherwise noted).

Table 6-5 Logic input characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input logic low voltage	1	0	_	0.8	V
V _{IH}	Input logic high voltage	-	1.5	_	5.5	V
V _{HYS}	Input logic hysteresis	-	_	300	_	mV
I _{IL}	Input logic low current	VINA/B = 0 V	-1	_	1	μΑ
Iн	Input logic high current	VINA/B = 3.3 V	_	33	100	μΑ
R _{PD}	Pulldown resistance	To GND	100	_	_	ΚΩ
4	Propagation delay	INA/INB transition to OUTA/OUTB			20	
t _{PD}	Propagation delay	transition	1	60		ns

6.6 Motor driver characteristics

Related motor driver pins include **OUTA**, **OUTB**.

All parameters are tested at $T_A = -40$ °C to +125°C, $V_{VP} = 6.5$ to 40 V (unless otherwise noted).

Table 6-6 Gate driver characteristics

Symbol	Parameter	Conditions		Тур	Max	Unit
t _{DT}	Output drive dead time	VP=24V, Guaranteed by design	_	200	_	ns
t _{RISE} /t _{FALL}	Output rise or fall time	VP=24V, Guaranteed by design	_	50	_	ns
R _{DSON_H}	High side MOSFET R _{DSON}	VP=24V, I=1A, T=25°C	_	430	_	mΩ
R _{DSON_L}	Low side MOSFET R _{DSON}	VP=24V, I=1A, T=25°C	_	210	_	mΩ
V _{DIODE}	Body diode forward voltage	I=1A, T=25°C	_	0.8	1	V

6.7 Current regulation

The related pins include REF, ISEN.

All parameters are tested at $T_A = -40$ °C to +125°C, $V_{VP} = 6.5$ to 40 V (unless otherwise noted).

Table 6-7 Open drain output characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Av	ISEN gain	REF = 2.5V	9.6	10	10.4	V/V
t _{OFF}	Fixed PWM off-time	-	18	25	32	μs
t _{BLANK}	PWM blanking time	-	_	2	_	μs

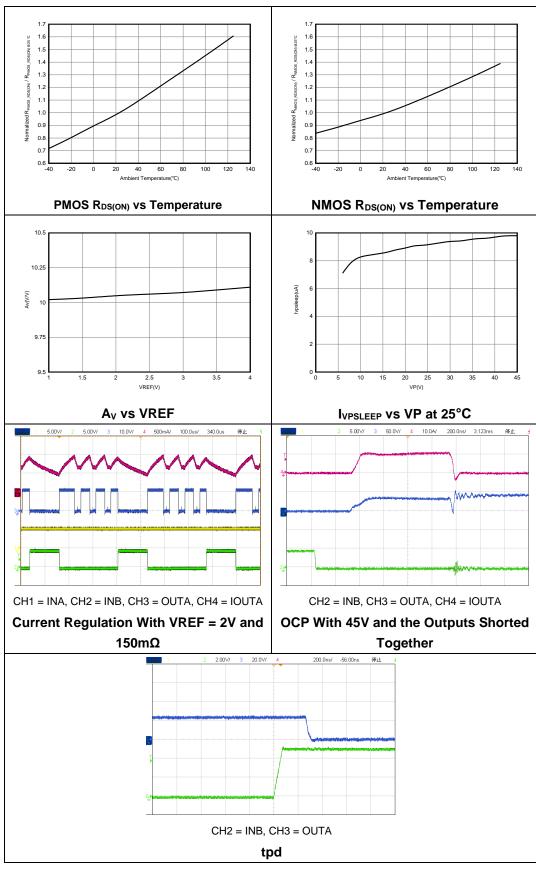
6.8 Protection features

Protection features include over current protection, under voltage lockout and thermal shutdown.

All parameters are tested at $T_A = -40$ °C to +125°C, $V_{VP} = 6.5$ to 40 V (unless otherwise noted).

Table 6-8 Protection features characteristics

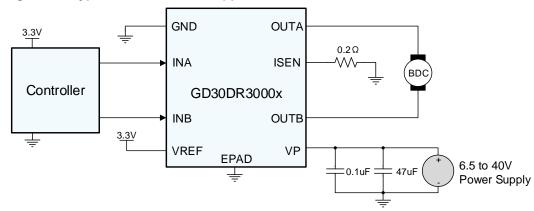
Symbol	Parameter	Conditions		Тур	Max	Unit
V _{UVLO}	VP undervoltage lockout	VP falling, UVLO report	6.0	6.1	6.2	V
V. n. n. o. 1 n. co	VP undervoltage	Dialog to folling threshold	na threshold – 200			mV
Vuvlo_HYS	hysteresis	Rising to falling threshold	_	200	_	IIIV
4	VP undervoltage	VP falling, UVLO report	_	10	_	-10
tuvlo_deg	deglitch time	vr lailing, oveo report				μs
I _{OCP}	Over current protection	OCP report	_	4.0	_	Α
tocp_deg	Over current deglitch	OCP report		1.5		2.5
	time	оог тероп		1.5		μs



GD30DR3000x Datasheet

t _{OCP_RST}	OCP retry time	OCP to normal retry	_	3	ı	ms
T _{OTSD}	Thermal shutdown	Die temperature, TJ		150	1	°C
	temperature					
T _{HYS}	Thermal shutdown	Die temperature, TJ – 30	_	°C		
	hysteresis	Die temperature, 13		30		

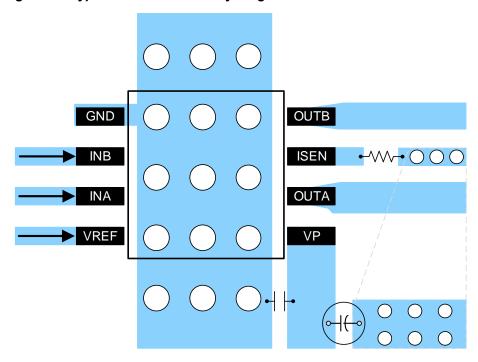
6.9 Typical Characteristics



7 Typical application circuit

The GD30DR3000x is typically used to driver one brused DC motor.

Figure 7-1 Typical GD30DR3000x application circuit


Table 7-1 Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Motor voltage	V_{M}	24 V
Motor RMS current	I _{RMS}	0.8 A
Motor startup current	I _{START}	2 A
Motor current trip point	I _{TRIP}	2.2 A
VREF voltage	V_{REF}	3.3 V
Sense resistance	R _{SEN}	0.15 Ω
PWM frequency	f _{PWM}	2 KHz

8 Layout guideline

Figure 8-1 Typical GD30DR3000x layout guideline

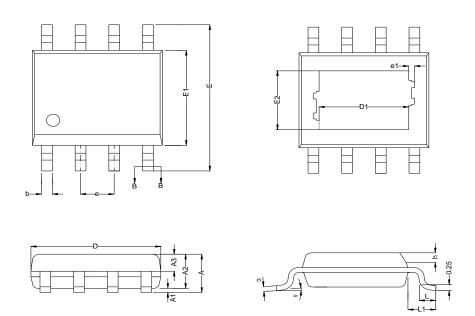
Notes:

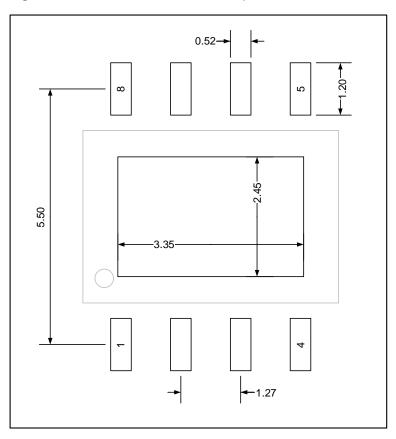
- 1. For devices with high currents passing through, wide traces or copper paving are recommended.
- 2. To shorten the distance of the driver high-current path, bulk capacitors should be placed.
- 3. Ceramic capacitors with small capacitance values need to be close to the chip pins.
- 4. In order to increase the heat dissipation effect, multiple ground vias should be added to the thermal pad, and it is recommended to do window treatment on the bottom layer of the PCB.

9 Package information

9.1 SOP8-EP package outline and dimensions

Figure 9-1 SOP8-EP package outline




Table 9-1 SOP8-EP dimensions

Symbol	Min	Тур	Max
Α			1.65
A1	0.05		0.15
A2		1.30	
А3	0.60	0.65	0.70
b	0.39		0.47
С	0.20		0.24
D	4.80	4.90	5.00
D1		3.10	
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
E2		2.21	
е		1.27	
e1		0.10	
L	0.50	0.60	0.80
L1		1.05	
h	0.25		0.50
θ	0°		8°

(Original dimensions are in millimeters).

Figure 9-2 SOP8-EP recommend footprint

9.2 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "O". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

Θ_{JA}: Thermal resistance, junction-to-ambient.

Θ_{JB}: Thermal resistance, junction-to-board.

Θ_{JC}: Thermal resistance, junction-to-case.

Ψ_{JB}: Thermal characterization parameter, junction-to-board.

 Ψ_{JT} : Thermal characterization parameter, junction-to-top center.

 $\Theta_{JA} = (T_J - T_A)/P_D$

 $\Theta_{JB} = (T_J - T_B)/P_D$

 $\Theta_{JC} = (T_J - T_C)/P_D$

Where, T_J = Junction temperature.

T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 Θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower Θ_{JA} can be considerate as better overall thermal performance. Θ_{JA} is generally used to estimate junction temperature.

 Θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 Θ_{JC} represents the thermal resistance between the chip surface and the package top case. Θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 9-2 Package thermal characteristics(1)

Symbol	Condition	Package	Value	Unit
ΘЈΑ	Natural convection, 2S2P PCB	SOP8	39.41	°C/W
ΘЈВ	Cold plate, 2S2P PCB	SOP8	12.83	°C/W
Θιс	Cold plate, 2S2P PCB	SOP8	26.81	°C/W
Ψ_{JB}	Natural convection, 2S2P PCB	SOP8	12.45	°C/W
Ψ_{JT}	Natural convection, 2S2P PCB	SOP8	2.65	°C/W

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

10 Ordering information

Table 10-1 Part order code for GD30DR3000x

Ordering Code	Package	Package Type	Packing Type	MOQ	Temperature Operating Range
GD30DR3000WGTR-K	SOP8-EP	Green	Tape&Reel	4000	-40°C to +85°C

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product , the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 GigaDevice - All rights reserved